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NOMENCLATURE

C = Constant coefficient

K = Sample size tolerance factor
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R = Resistive stress

s = Structure
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ty = Yield stress
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TECHNICAL PAPER

INHERENT CONSERVATISM IN DETERMINISTIC
QUASI-STATIC STRUCTURAL ANALYSES

I.  INTRODUCTION

In designing reliable and affordable next generation carriers to orbit, performance of aerospace
frame structures once more emerges as a critical limiting component requiring innovative configurations,
updated materials, and refined analyses. And because designing for structural safety is in direct contention
with performance and cost, a study was initiated to explore the prevailing deterministic structural safety
factor assumptions and standards for their often suspected conservatism.

The origin of the conventional safety factor, its simplistic application, its verification criteria, and
launch vehicle performance sensitivities to its excesses were briefly reflected upon. Though raw data
dispersions were noted to be processed through probability techniques, current practice is to reduce them
to deterministic input values for quasi-static substructural loads and stress computations; and there lies the
cradle of excessive conservatism. As deterministic values were combined and manipulated throughout the
computations, the imbedded statistical dispersions were impelled to be summed rather than root-summed-
squared, which violated error propagation laws that predicted cumulative excessively applied loads and
stresses.

Conserving the data in statistical format and complying with the error propagation laws throughout
the structural computation processes lead to designer controlled and leaner safety factors which are treated
in the conventional manner to assess the structural relative safety and to experimentally verify the structural
response. In examining the role of the safety factor in the failure concept, the safety factor only increases
the number of standard deviations of the applied stress, which decreases the applied and resistive stress
overlap.

The safety factor expressing the applied and resistive stresses in statistical format was integrated
into the first order reliability method to provide the option of designing the structural frame to a specified
uniform and absolute reliability, or to relate the arbitrarily specified design safety factor to a normalize
reliability. Unexpectedly, the safety factor as currently applied is proportionately relative only with materials
and welds having identical coefficients of variation. As the coefficient of variation increases, the relative
proportion of the safety factor and the normalized reliability decreases.
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II.  CONVENTIONAL SAFETY FACTOR

The conventional safety factor has served the aerostructural community very well through many
progressive changes in materials, associated disciplines, and subjective assumptions. Perhaps its success is
owed to its unchallenged safety conservatism and to its neglected performance potential. It should be
instructive to assess excessive safety factor consequences to payload performance, and subsequently to
cost, through its sensitivity to surplus weight over global structural areas. Local stress concentration regions
identified by abrupt changes of geometry, loads, metallurgy, and temperature are of less consequence to
performance.

A.  Historical Note

Though there was very little statistical data on loading conditions in 1932, there was evidence that
successfully designed airplanes did not yield. Since the common structural materials were 17ST aluminum
alloy and 4130 steel, and since the aluminum had an ultimate-to-yield stress ratio of 1.5, the arbitrary 1.5
safety factor at fracture was universally accepted1 by the Commerce, Air Force, and Navy departments.
Steel structures were obviously penalized by that standard, but it was acceptable because of their limited
applications at that time. During the Apollo program, NASA field centers chose to reduce the ultimate
safety factor to 1.4, in order to capitalize on recently improved aluminum properties to increase vehicle
performance. Again its penalty to high strength steels was ignored. The 1.4 factor at fracture is now an
official NASA standard,2 and it is expressed by:

SF
S
Stu
tu

A
= =1 4.   . (1)

Though safety factors generally are specified at all levels of material fundamental property changes,
the safety factor based on polycrystalline yield is difficult to verify. Plastic deformation starts in different
locations, numbers, and intensities, and it is hard to detect and determine where and how much deformation
has progressed until large enough parts have been affected and detected. This phenomenon explains why
different gauge lengths in uniaxial tensile tests provide different elastic limits, why yield coefficients of
variations are higher than strength variations, and why the elastic limit is more difficult to detect in brittle
materials. Exceeding the yield point permanently changes the structural boundary conditions and reduces
fatigue life. Similar degradation phenomena may exist in composites (matrix cracking) with varying
consequence in stiffness or utility. These, among others, are reasons for which explicit yield safety factors
should be contingent on the consequence3 of each operational case.

Nevertheless, current deterministic experimental tests consist of a static structural elastic response
verification to predicted maximum operational environments, and of an ultimate safety factor of 1.4
verification to avoid operating in the plastic region of most aerostructural polycrystalline materials. The
fracture safety factor subsequently has been rationalized to cover rare operational events in which no
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statistical design data exists. Its traditional and historical usage now exerts the greatest influence on design
and contractually binding acceptance criteria.

It should be cautioned that a deterministic static test is a pass-fail experiment of combined physical
phenomena resulting in single numbers that often approximate expected fracture values for the wrong
reasons. Comprehensive pretest and posttest analyses are essential for resolving the right reason and for
learning the most from the test investment. A test not conducted to fracture provides little information no
matter how well the complex structure performs thereafter. While the loading instant, location, and nature
of yielding may be difficult to experimentally detect, testing to fracture leaves little doubt.

B.  Consequence of Excessive Conservatism

A deterministic static test should prove the article to not be marginally or excessively safe for all the
right reasons. A meaningful stress audit should present negative and positive margins and consequences
for both cases. While the cause and consequences of negative margins derived from tests are invariably
modified, sources and consequences of excessive positive margins are often ignored at the ultimate expense
of payload performance. The dilemma and magnitude of excessive conservatism may be best appreciated
through illustrations of the carrier performance sensitivities to surplus structural safety. For example, a
monocoque shell structural weight is defined by:

W C rlts = 1

where two of the dimensions (r and l) envelop the structural element size and shape that are usually optimized
by the system’s operational environments, payload performance, and cost. The thickness, t, is controlled
by normal stress limitations and by the designer’s selected safety. Applying the safety factor on the load, p,
a hypothetical tank minimum thickness is approximated from the material physics:

t
p SF r

Stu
= ( )

  ,

and the shell weight is rewritten to relate to the safety factor by:

W
C lr p SF

Ss
tu

= 1
2 ( )

  .

The weight performance sensitivity4 to the safety factor is given by the change in weight to change in the
safety factor:

 
∂ ∂ ∂W
W

C lr p SF S

C lr p SF S
SF

SF
s

s

tu

tu
= =1

2

1
2

( )

( )
( )

( )   ,

resulting in a direct proportionality of 1 percent increase in weight for each percent increase in safety
factor. This sensitivity may be a useful thumb rule for assessing the safety factor penalty to structural
element performance subjected to normal stresses.
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The length and width of a plate in bending is another example of the element size that is fixed by
the structural system, and the thickness parameter is approximated from:

t
C M SF

bStu
= 





2
1
2( )

  ,

where the ultimate tension and compression stresses are assumed symmetrical. The plate weight is:

W C lb M SF
bSs

tu
= 
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1
2( )   .

Proceeding as before, the bending plate weight sensitivity to the safety factor is the partial of the weight
divided by the weight:

∂ ∂W
W

SF
SF

s

s
= 0 5. ( )

( )   ,

and the bending sensitivity turns out to be half of the normal stress sensitivity. However, bending stresses
are primarily local and are not as weight prevalent as normal stresses in aerospace structures. Sensitivities
should be verified on all global, high-performance flight structures to effectively support trades and design
insight.

The ultimate ripple effect of excessive safety factors may be realized from flight performance
parameters. Using the well-known rocket equation:

∆ ∆V Vloss I g
W

W W Wsp
p

s p PL
− = + +ln   ,

and assuming the orbital and propulsion parameters are constant, then the mass fraction remains a constant:

exp.

∆ ∆V Vloss
I g p

p s PL

sp
W

W W W C

−

= + + = 4   ,

and the propellant weight to orbit is:

W
C

C W Wp s PL= − +4

41 ( )  .
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The sensitivity of the propellant weight increase to accommodate structural weight increase is:

∂ ∂W

W
W

W W
W
W

p

p

s

s PL

s

s
= +   .

Using the weight-to-safety factor relationship developed above, the sensitivity of increased propellant
weight consumption to accommodate the safety factor increase is:

∂ ∂W

W
W

W W
SF

SF
p

p

s

s PL
= +

( )
( )   .

The ripple effect continues in that, increasing the propellant weight further increases the tank size
and tank weight, which necessitates more propellant weight, etc. The increased tank size and associated
propellant loading facilities represent the initial manufacturing costs. The increased tank and propellant
weights are the recurring costs of lost performance. Recognizing the penalties of excessive safety factors
and potential rippling effects, then it seems not enough for a senior structural analyst to design a reliable
structure. His hallmark should be a lean reliable design such as to create and shift the least excessive
conservatism burden downstream onto the vehicle performance and supporting disciplines.

On the other side of conservatism is the acceptance and compensation of marginal assumptions
made in structural modeling. The above shell thickness example was a strength of materials approximation
of an elasticity theory tube in which the thickness-to-radius ratio is assumed very small, such that the radial
strain may be assumed uniform across the thickness to simplify the compatibility and boundary conditions.
The error is often less than 1 percent for common shell properties and is usually ignored. The plate is also
a strength of materials approximation which assumes the elastic cross section to remain rectangular after
bending. Most analytical and finite element method models are also approximations to simplify and expedite
solutions with negligible resulting errors. Nevertheless, it is incumbent on the analyst to assess and estimate
errors before dismissing them or lavishing approximate solutions with arbitrary gut compensating factors.
It’s all part of the professional bag of creditable experience.
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III. DATA CHARACTERIZATION

Models are idealized into the simplest mathematical expressions within the physical phenomena of
the data and its intended application. Not all data is equally important, as noted by Pareto’s principal5 and
as can be distinguished by sensitivity analyses. Data having negligible effect on performance may be
reduced to deterministic values. Data having major consequences must be characterized and processed in
statistical format throughout the computational process involving single and combined phenomena.

Data that must be expressed and processed in statistical format is developed in this section, and
those familiar with probability methods may wish to defer it. Those pragmatists interested in reviewing
basic probability expressions will find most of the statistics and probabilistic techniques required for
structures in this section.5 While acknowledging the immense contributions of statisticians to structural
analyses, it is often more important, in an established process, that structural analysts learn a little statistics
than a statistician know a little structures.

A.  Central Moments and Distributions

Variations are intrinsic in all observed phenomena and are of little engineering information in raw
form. The best approach to summarizing a table of raw data of any distribution is to define the centroid
about which the data is scattered. This variable is the first central moment6 of the independent variables
commonly known as the sample mean, or sample average, and is defined by:

µ = ∑
=

1
1n xi

i

n
(2)

where xi is the ith specimen value, and n is the total number of specimens. The sample mean is calculated
from a limited sample size and is, therefore, an estimate of the population mean. A measure of the dispersion
of the data about the mean is the second central moment known as the sample variance, and its square root:

σ µ= − −( )∑










=

1
1

2

1

1
2

n xi
i

n
  , (3)

is called the sample standard deviation “σ “ and is a measure of the actual variation in a set of data.

The coefficient of variation is a relative variation, or scatter, among sets and is defined as the ratio
of the standard deviation and the mean:

η σ
µ=   . (4)
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The coefficient of variation is an effective technique for supporting judgment through comparison with
other known events. Coefficients of variation are known to be small for biological phenomena, but they are
large for natural materials. Coefficients of variation are small for highly controlled manmade materials and
are larger for brittle materials. A knowledge of typical coefficients of recurring sources may serve as a
source for judging quality and acceptability of data. Estimates of some common material structural properties
characterized by coefficients of variations are metal ultimate strengths 0.05, yield 0.07, weights 0.015,
steel fracture toughness 0.07, constant amplitude fatigue 0.40, and filament composite strength 0.12.

Another technique used to evaluate raw data is the population probability density distribution,
which defines the area shape of the distribution. Distribution shapes are fixed by their natural scatter of
data about their means. Shapes are modeled by distribution functions to estimate the probability of a desired
value for an assigned range of probability. As shapes become more complex, distribution models become
more difficult, and skills and labor to apply them escalate. There are obviously many continuous distributions
that may be constructed and favored by academicians, but normal distributions are most widely used by
practitioners because they are the easiest and because the mean of “n” independent observations is believed
to approach a normal distribution as “n” approaches infinity (central limit theory). It is also a good
representation of many natural physical variables or for small samples with no dominating variance. The
equation of the normal probability density distribution is:

f x
xi( ) exp ,= −

−





1
2

1
2

2

σ π
µ

σ   for −∞< <∞x   , (5)

assuming true values of a very large sample size. Normally distributed phenomena are sometimes disguised
as nonnormal when data samples are selected from casually broadened and unscreened sources. Most
metallic mechanical properties are known to be normally distributed, though fatigue properties are not, as
fatigue is presently understood.

Analytical advantages in using normal probability distributions are that they may be completely
defined by two variables (µ and σ), and it is the most developed theory having many of their characteristics
well established. The area within a specified number of standard deviations of a probability density plot
represents the proportion of the data population captured. One standard deviation about the average of a
normal distribution is calculated to capture 68.3 percent of the data tabulated as illustrated in figure 1. Two
standard deviations include 95.5 percent of the data, and three standards include 99.7 percent.

FIGURE 1.—Normal probability density plot.
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The normal distribution plot and the mathematical test for the normality of data distribution are
programmed in quick basic in appendices A1 and A2 for convenience. Most engineering data distributions
are one-sided, occurring in the lower or upper sides of the data, such that either side may be developed into
a split normal, should the distribution not pass the normality test. This cognizance and the central limit
theory justify the presumption that structural probability demand and capability distributions may be
normalized by constructing a mirror image of the engaged side about its peak frequency value and calculating
the standard deviation from the constructed symmetrical distribution. This universal normalizing technique
is illustrated in appendix A3 and is applicable to normal and nonnormal observed structural data. Hence, all
structural data in this study is assumed to be generalized into normal probability distributions and, therefore,
benefits from existing first-order techniques to simplify and expedite solutions with negligible consequences.

B.  Statistical Format

In structural analysis, tolerance limit is a convenient statistical format for all input and output data
which defines the distribution and specifies a statistical range of variations about the data’s most probable
value. Statistical tolerance limits may be defined from a normal probability density plot for any given
proportion of data and are commonly expressed in statistical parameter format:

T Nlim = ±µ σ   , (6)

or in using equation (4):

 T Nlim ( )= ±µ η1   , (7)

where T is the input-output data, such as loads or stress. The range factor N is a designer controlled number
of standard deviations required to capture a specified percent of data from the high or low side (±) of a plot.
On many nonredundant critical structures, the range factor of N=3 is selected to capture a realistically high
percent or observed extreme of the data population. In current deterministic analysis, the single values of
the mean and standard deviation are substituted in equations (6) or (7) to reduce them to single value input-
output data. It must be emphasized that once the tolerance limit format is converted into a deterministic
value, it cannot be decomposed into its original statistical format from the deterministic value alone.

However, true values of the mean and the standard deviation in equation (6) are not generally
known from small sample sizes, for they may not contain a given portion of the population estimated by
equations (2) and (3). In other words, the same test conducted on the same number of specimens by different
experimenters will result in different means and standard deviations because of the inherent randomness in
the specimens and testing. The population must contain results from all of these experiments.

To insure with a certain percentage of confidence that the given portion is contained in the population,
a K-factor is determined to account for the sample size and proportion. Figure 2 provides the K-factor for
random variables with 95 percent confidence levels and three probabilities (0.90, 0.95, and 0.99) in a one-
sided normal distribution. Other confidence K-factors may be computed from the program provided in
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appendix B from which the K-factor maximum or minimum design value may be determined for a specified
probability and confidence. That allowable design value is the upper or lower tolerance limit defined by:

T Klim = ±µ σ   . (8)

FIGURE 2.—K-factors for one-sided normal distribution.

C.  Resistive Uniaxial Stress

 The resistive stress probabilistic distribution is a direct data characterization of material strength
from a uniaxial stress test. While most of NASA material properties are specified by “A” and “B” bases,
the tolerance limit of equation (8) is specified for the lower half of the distribution:

S KR R R= −µ σ   , (9)

and by the number of test samples. Test samples may range from standard uniaxial tensile specimens
through pressure bottles. It’s a trade between the initial cost of extensive material sample testing and the
recurring cost of lost performance of global structures based on designing to a larger factor to compensate
for small sample property predictions.

Consistent with critical main structures and welds, the stress dispersion is often autonomously
assumed as 3 σ, or K=3, requiring at least 32 test samples (figure 2) for an A-Basis material. An A-Basis
property allows that 99 percent of materials produced will exceed the specified value with 95 percent
confidence. The B-Basis allows 90 percent with the same 95 percent confidence. Figure 3 illustrates the
probability and confidence plot for an A-Basis design.
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FIGURE 3.—One-sided normal distribution with A-Basis.

Most normally distributed material properties are developed in tolerance limit format as in equation
(9). However, they are more often reduced and published as deterministic single values, and cannot be
decomposed again into tolerance limit format as required for reliability analyses. These published7

deterministic properties are a serious loss of existing but incompatible data for future applications of reliability
methods.

D.  Combining Statistical Data

Combining data that are statistically characterized variables and are mutually exclusive may be
defined as a multivariable function by combining their dispersions through the following error propagation
laws.8,9 When two or more independent variables are added or subtracted, their means are added or subtracted
and their standard deviations are root-sum-squared (rss) by the summation function rule:

for z x y= ± ,  σ σ σz x y= +2 2   . (10)

Applying this to the sum of a string of tolerance limits gives:

T T Ni
i

n

i i i
i

n

i

n
= ∑ = + ∑













∑
= ==1

2 2
11

1
2

µ σ   . (11)

When independent variables are multiplied and/or divided (± exponent), their coefficients of variation are
root-sum-squared according to the power function rule:

for z x ya b= ,  η η ηz x ya b= +2 2 2 2    , (12)

where ηz represents the coefficient of variation of that product. Elastic modulus and Poisson’s ratio are
defined by multivariables having measured dispersions and must be combined by the power function rule.
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Though these rules apply to all statistically formatted and manipulated input-output data through loads and
stress computational processes, deviations are inaccessible for complying with these functional rules in
deterministic methods.

E.  Interfering Distributions

Another type of data characterization is the development of a third distribution from two opposing
distributions defined by their tolerance limit formats, such as in the failure concept.  Failure occurs when
demand exceeds capability. When applied stresses and material strengths are defined by probability
distributions, probability of failure increases as their tail overlap area increases as shown in figure 4. The
overlap area suggests the probability that a weak material will encounter an excessively applied stress to
cause failure. The probability of failure decreases as the designer controlled difference of the distribution
means increases and the natural distribution shapes decrease.

FIGURE 4.—Failure concept.

As discussed before, just the distribution side producing the worst case design problem is of any
engineering interest, as is clearly demonstrated by the failure concept of figure 4. Only data from the right
half of the applied stress distribution (greatest demand) is engaged with data from only the left side (weakest
capability) of the resistive stress. Data from the other two disengaged distribution halves is irrelevant to the
failure concept. Having defined the resistive stress distribution in subsection 3 above, the applied stress
distribution computational process follows before the failure, or reliability, concept may be developed in
section V.
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IV.  APPLIED UNIAXIAL STRESS

This section develops the normal distribution worst half of the uniaxial equivalent applied stress on
a first-cut structural frame design, and then iterates allowable stresses to satisfy specified safety. It
characterizes probability data in statistical format and scrutinizes all data input-output throughout structural
computation processes for dispersions and assumptions contributing to excessive conservatism. Structural
computational processes leading to applied uniaxial stress normal distribution include: multiaxial quasi-
static design loads; multiaxial static design loads; multiaxial stresses; state of stress; failure criteria; applied
uniaxial stresses.

A. Vehicle Quasi-Static Design Loads

Events that design vehicle substructures include on-pad assembly, liftoff, max Q, high-g, separation,
etc. Launch vehicle forcing functions used to generate ascent generalized forces include: wind speed,
shear, gust and direction; propulsion thrust rise, oscillations, and mismatch; thrust vector control angle and
rate; vehicle acceleration and angle of attack; mass distribution; other special trajectory generated
environments.

Because input environments to response analysis are time-dependent and statistically characterized,
the induced loads output is also time-dependent and of a statistical nature. The response histories at select
grid points are illustrated in figure 5, in which a specific time event may produce a maximum internal load
for a degree of freedom (DOF) at one grid point only. Other time events produce maximum loads at other
grid points as shown. Where a maximum internal load response is identified at a grid point, the free-body
diagram of the included substructure experiencing that maximum response is constructed with all time-
consistent loads acting along the total system. This computational process for designing different parts
through time-consistent and statistically dispersed loads is repeated for each substructure at each unique
event time producing the maximum load response about each axis. The end product of the structural response
to environmental excitations is a set of maximum design loads, or “limit loads,” and event times for all the
system substructures and critical regions.

FIGURE 5.—Time-dependent response.
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Aerospace loads modeling uses established computational structural dynamics principles and solution
techniques10,11 for multi degrees-of-freedom (MDOF) structures. Models assume the structural system to
be represented by a network of finite elements designated along the body possessing mass, damping, and
stiffness. Natural and induced environments act as forcing functions at discrete grid points. The motion of
the total structure is composed of a system of substructures which are expressed by the linear matrix
differential equation:

M X t C X t K X t F t[ ]{ }+[ ]{ }+[ ]{ }={ }˙̇ ( ) ˙ ( ) ( ) ( )   .

The acceleration matrix, ̇˙( )X t{ }, is the time-dependent physical coordinates at DOF. The [M], [C], and [K]

coefficients are mass, damping, and stiffness matrices, respectively. Dispersion of input data to these
coefficients is usually constant or negligible and may be defined as σ=0 throughout the computations. The
forcing function {F(t)} is a matrix of time-dependent environmental excitations acting along the structural
body. Its columns represent time increments. Its matrix rows represent discrete grid points of body internal
DOF at which natural or induced environments are acting at one instant of time. Data characteristics of
these forcing functions are of a statistical nature, having notable dispersions and consequences. Subsequently,
they must be defined in statistical format and must be further treated by error propagation laws of equations
(10) and (12).

 However, these forcing functions are currently defined by deterministic variables and are bounded
to be summed algebraically when combining through all the following major steps in the quasi-static
computations. The combined summation includes the deviations which generate a major source of
uncontrolled conservatism.

 The above matrix differential equation is comprised of a set of coupled equations of motion which
may be uncoupled through the mode-superposition method to determine the response of a system to a set
of forcing functions. The system’s undamped natural frequencies ω and mode shapes [φ] are solved from
the undamped eigenvalue problem, ([K]–ω 2[Μ]) [φ]=0, to obtain the coordinate transformation:

X q q tr r
r

N
{ }=[ ]{ }= ∑

=
φ φ ( )

1
  ,

where q is the generalized coordinates for r=1, 2, 3, …N modes. The shape matrix [φ] rows represent the
mode shape values at each DOF grid point, and columns represent different mode shapes relating to each
natural frequency. Substituting the coordinate transformation equation into the linear matrix differential
equation and premultiplying by the transpose of the mode shape, results in the equation of motion in terms
of modal matrices and generalized coordinates. Because of orthogonality, coefficient matrices are diagonal
matrices, and the uncoupled system differential equation of motion reduces to:

I q t q t q t F tT[ ]{ }+[ ]{ }+[ ]{ }=[ ] { }˙̇ ( ) ˙( ) ( ) ( )2 2ζω ω φ   ,
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where I MT[ ]=[ ] [ ][ ]φ φ , 2ζω ϕ φ[ ]=[ ] [ ][ ]T C , and ω φ φ2[ ]=[ ] [ ][ ]T K  are the generalized (unity) mass matrix,
damping matrix, and stiffness matrix, respectively, in deterministic format, and φ[ ] { }T F t( )  is the generalized
force in statistical format.

The generalized force is calculated from a given a set of forcing functions also in statistical format,
and the generalized coordinates ˙̇ , ˙,q q q are then determined by integrating the uncoupled system differential
equation for events characterized by associated forcing functions. Substituting these generalized coordinates
into the coordinate transformation equation above yields the desired system physical coordinates ˙̇ , ˙ ,X X X.
These physical coordinates are then used to compute the substructure internal loads to form a set of quasi-
static design loads calculated through a loads transformation matrix (LTM) of the inquired internal loads.
Applying the substructure’s stiffness matrix into the modal displacement method, the internal loads {L(t)}
of the substructure are given by:

L t K X t( ) ( ){ }=[ ]{ }  ,

where K[ ] selects rows of the substructure stiffness matrix corresponding to the desired internal DOF

grid points, and:

X t T X t( ) ( ){ }=[ ]{ }

is the total substructure displacements. The [T] matrix selects the substructure DOF out of the system
displacements. The loads matrix may be rewritten as:

L t LTM q t( ) ( ){ }=[ ]{ }  , (13)

where:
[LTM]=[K] [T] [φ]

is the load transformation matrix. The resulting internal loads, {L(t)}, are the desired quasi-static response
load at grid point “g” substructure, and results are expressed with forcing functions Fi in statistical format
and “ci” time consistent response gains (influence coefficients):

  
L c F c F c F c F c Fg = + + + + +1 1 2 2 3 3 4 4 5 5 K (14)

or:

  
L c N c N c N c Ng = + + + + + + + +1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4( ) ( ) ( ) ( )µ σ µ σ µ σ µ σ K (15)

influencing respective subscript grid point. The resulting equation (15) defines a linear combination of the
elements of a random vector having a combined mean:

µ µg

i
i

n i i
i

n

c

c=
∑

∑

=

=
1

1

1
   , (16)
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and combined standard deviation:

σ σg

i i
i

n i i i
i

n

c N

c N=
∑

∑












=

=
1

1

2
1

1
2

( )   . (17)

Combining equations (16) and (17), and autonomously selecting the final probability range factor N, the
desired output probabilistic response (or limit) load at grid point g is:

L Ng g g= +µ σ   . (18)

However, in the deterministic method, all the terms in equation (15) are summed which reduces the
deterministic load response to:

L c c Ng i i i i i
i

n

i

n
= + ∑∑

==
µ σ

11
  . (19)

While the first term on the right side of equation (19) may be reduced to the combined mean of equation
(16), the second term violates the summation function rule, equation (11), and reflects the worse-on-worse
input-output process which is  excessively conservative.

B.  Total Combined Structural Loads

Other structural loads that must be combined with the quasi-static loads are the static ground and
flight environmentally induced loads which include thermal, pressure, vibration, acoustic, etc. These loads
are statistically derived and must be statistically formatted as in equation (6) and combined consistently
with operational event and time by equation (11):

L
N

N

Ng k
g

k
k

n k
k

n

k
k

n
= +

∑
∑∑

=

==
µ σ

1

11
  , (20)

or:
L Ng g g g= +µ η( )1   , (21)

where Lg is the load at grid point g, and k represents all the induced loads at an event and time. Ng is
autonomously selected for that grid point. Induced loads with negligible variations and consequences may
simplify the computations by assuming σ= 0 in the summation function rule.
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However, in the current deterministic method, all static loads are reduced to deterministic terms
and added to deterministically reduced quasi-static loads in which all means and standard deviations are
added:

L Ng k k k
k

n

k

n
= + ∑∑

==
µ σ

11
  , (22)

contrary to the summation function rule of equation (11). Furthermore, the statistically formatted static
load cannot be appropriately added to the deterministic quasi-static load. This step in the loads process
generates a second source of excessive conservatism, in which the correct total load derived from equation
(20) is smaller than the determinist total load from equation (22).

C.  Structural Stress Response

The structural stress model is represented by the same network of finite elements designated along
the body with grid points corresponding with those on the quasi-static loads model above. Then each
substructure is analyzed for the worst combination of time constant loads acting over the grid points that
produce the greatest applied stress. Since input loads are expressed in statistical format as in equation (21),
the computed stress output should also be produced in statistical format:

S Ng g g= +µ η( )1   , (23)

through the error propagation laws of equations (10) and (12) for all stress components at each grid point.
The coefficient of variation ηg is the same as that derived from loads in equation (21).

In deterministic methods, the input statistical variables, equation (21), are treated as single values,
and they again violate the error propagation laws when combined in computations of the structural response.
To create a third source of excessive conservatism the NESSUS/FEM12 module should be considered
when using finite element methods.

D.  Equivalent Uniaxial Strength

Proceeding with the search for sources of excess conservatism in the current deterministic process,
the state of stress and failure criteria were examined. In order that applied triaxial stresses acting at any grid
point, may be equated to the resistive (or ultimate) uniaxial stress in equation (1), the applied triaxial
stresses must first be reduced into one dimensional (resultant) stress and then indexed to an equivalent
uniaxial yield strength.

The complex state of stress at a point on an oblique surface of a solid may be readily derived13 by
modeling the three normal principal stress components acting along the orthogonal principal axes of a
tetrahedron. The sum of forces along each axis provides three linear homogeneous equations to be solved
simultaneously. A nontrivial solution of stress on the oblique surface is obtained by setting the resulting
determinant of the stress coefficients to zero. The solution to the determinant is reduced to a cubic equation
having three combinations of component stresses as coefficients Ii of the oblique normal stress:
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S I S I S I3
1

2
2 3 0= − − =   ,

known as invariant. The first invariant is the sum of the determinant diagonal which relates to the
hydrostatic stress:

 I S S S1 1 2 3= + +   ,

with a mean stress of S Imean = 1 3/ . The second invariant is the sum of the principal minors:

I S S S S S S2 1 2
2

2 3
2

3 1
21

2= − + − + −[ ]( ) ( ) ( )   ,

that relates to shear stress. These shear stresses should be in statistical format but are currently defined as
deterministic values. The third invariant is the determinant of the whole matrix. These invariants of the
state of stress are noted to be independent of material properties, which incites the next point.

Currently, there is no theory that directly relates multiaxial stresses with uniaxial yield or ultimate
stress. However, there are several criteria in which the elastic limit of a multiaxial stress state is empirically
related to the uniaxial tensile yielding, and results are reasonably consistent with experimental observations.
The Mises yield criterion14 is based on the minimum strain energy distortion theory which supposes that
hydrostatic strain (change in volume) does not cause yielding, but changing shape (shear strain) does cause
permanent deformation. Hence, the yield criterion relates the experimental uniaxial tensile elastic limit, Sty ,
to the principal shear stresses through the square root of only the second invariant of the stress matrix. Then
using the second invariant, the Mises initiation of yield criterion is expressed in its familiar form by:

S S S S S S Sty = − + − + −[ ]1
2 1 2

2
2 3

2
3 1

2
1
2( ) ( ) ( )   , (24)

which depends on a function of all three principal shear stresses. Because of squared terms, it is
independent of stress signs and, therefore, it is applicable to compression and tensile combinations of
multiaxial stresses. And because of isotropy, the second invariant implies that it is independent of
selected axes and may be expressed about any oblique plane:

S S S S S S S S S S S S Sty x y z x y x z y z xy xz yz= + + − − − + + +[ ]2 2 2 2 2 2
1
23( )   . (25)
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Using equation (25), the pure shear yield stress reduces to S
S

sy
ty=
3

 and is a good approximation of test

results. Having established the yield stress by equations (24) and (25), the criterion also expresses the

equivalent applied uniaxial tensile stress over the total elastic and inelastic range about that yield stress:

S S S S S S S S S S S S Seqiv x y z x y x z y z xy xz yz. ( )= + + − − − + + +[ ]2 2 2 2 2 2
1
23   . (26)

As noted above, these invariant stresses are in fact probabilistic stresses. But the current deterministic
application of the Mises criterion, as expressed by equation (26), again violates the error propagation laws
enforcing a larger combined stress case than the statistically complied case, thus rendering a fourth source
of excessive conservatism. Since the four sources of excessive conservatism build on each other sequentially
in the applied stress computational process, equations (25) and (26) represent the total accumulative yield
and allowable stresses respectively. If the Mises stress of equation (25) exceeds the allowable stress of
equation (1), the structural thickness is increased and the applied stress process is iterated.

Returning to the Mises criterion of equation (26), the local multiaxial stresses should be in statistical
format:

 S Ni i i i= +( )µ σ   , (27)

and may be appropriately combined through the error propagation laws by expanding the functional
relationship in a multivariable Taylor series about a design point (mean) of the system. The mean of the
Mises combined applied stresses is determined from equations (26) and (27):

µ µ µ µ µ µ µ µ µ µ µ µ µA x y z x y y z z x xy yz zx= + + − − − + + +[ ]2 2 2 2 2 2
1
23( )   . (28)

The combined standard deviation is calculated from:
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and the controlled standard deviation is:
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The probability range factor is calculated from equations (29) and (30):

  
NA

A

A
=

)σ
σ   , (31)

and using equation (6), the coefficient of variation is:

η
σ
µA

A

A
=   . (32)

The partials of each term under the radical of equation (26) are given by the chain rule:

d w S
dS

d w
dw

dw
dS w

dw
dS

i

i i i

( )
= = 1

2
  .

The normal partials are:

∂
∂

µ µ µS
S S

A

x

x y z

A
=

− −2
2   ,      

∂
∂

µ µ µS
S S

A

y

y x z

A
=

− −2
2   ,      

∂
∂

µ µ µS
S S

A

z

z y x

A
=

− −2
2    , (33)

and the shear partials are:

∂
∂

µS
S S

A

xy

xy

A
=

3
  ,        

∂
∂

µS
S S

A

yz

yz

A
=

3
  ,        

∂
∂

µS
S S

A

zx

zx

A
=

3
   . (34)

All partials are evaluated at the system mean. Applying equations (28), (29), (22), and (23) provides the
appropriate applied stress of the system in statistical format:

  
)
S NA A A A= +µ η( )1   . (35)
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V.  SAFETY CHARACTERIZATION

Having defined the probabilistic resistive stress by equation (9), and having amended the probabilistic
applied stress by equation (35), a relative probabilistic safety factor may be established, and its experimental
verification limits, its relative role in the failure concept and absolute safety index may be completely
characterized.

A.  Probabilistic Safety Factor

Generically, a safety factor is expressed as the ratio of the resistive to the applied stresses, where the
resistive stress is reference to the ultimate or yield strength of an A- or B-based material and the applied
stress is designed to not exceed an arbitrarily specified safety factor. A probabilistic safety factor expresses
the applied and resistive stresses in probabilistic format:

SF
S
S

K
N

R

A

tu R

A A A
= =

−
+

µ η
µ η

( )
( )

1
1    . (36)

In designing to a specified safety factor, the designer controllable variables are the: material K-factor by
choosing the number of test specimens as discussed before; the applied stress range factor selected
autonomously by the loads analysts; and maximum predicted applied stress to not exceed the specified
safety factor.

To verify the design safety factor of equation (36) on a substructure, two conditions must be
experimentally confirmed, the maximum predicted operational applied stress and the structural response to
the predicted applied stress. It must be noted that the maximum predicted operational applied stress can
only be confirmed by field or flight tests, and it may be many flights before each unique event producing
the maximum load environment at each different substructure is achieved. It should be further noted that if
the design operational applied stress is exceeded well into the program operational phase flight (exceeds
yield safety factor), the contingency safety factor of equation (1) will accommodate it as nonlinearly inelastic
on the “first loading” (cycle) and subsequently linearly elastic.

The structural response of the NASA standard is experimentally verified through a static test in
which the maximum predicted operational applied stress with a safety factor of at least one will cause the
material to yield, and the operational applied stress increased by a safety factor of at least 1.4 times will
produce fracture. If yield and fracture occur prematurely, the stress math model or material properties are
in error, or a sneak phenomenon may be involved. Response dispersions of test articles vary with materials
and manufacturing dispersions.

The probabilistic structural response of equation (36) is experimentally verified to a predicted leaner
applied stress. Structures tested to the more conservative deterministic applied stresses possess more margins
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than the more appropriate probabilistic applied stresses . Therefore, it is expected that those existing structures
tested to deterministic stresses and found submarginal may be perfectly adequate. Those found adequate
may be excessively conservative.

B.  Failure Concept

While the prevailing deterministic safety factor is the most commonly specified structural safety
criterion, the mechanics of how safety is achieved in the failure concept are not expansively understood. In
applying the probabilistic safety factor to the failure concept diagram of figure 6, equation (36) is noted to
define three zones:

µ µ µ σ σR R R R R RS K K− = − − =( )   , (37)

S S SF S S SF S SF NR A A A A A A A− = − = − = − +( ) ( ) ( )( )1 1 µ σ   , (38)

S N NA A A A A A A A− = + − =µ µ σ µ σ( )   . (39)

FIGURE 6.—Failure concept governing zones.

The mid zone is observed as an extension of the applied stress distribution by the safety factor:

S S SF SR A R− = −( )1 1   . (40)

Thus, the primary role of the safety factor is to decrease the applied stress tail overlap in the failure concept
by extending the applied stress tolerance limit in figure 6 through the combined equations (38) and (39):

N S N SF Neff A R A A A A A Aσ µ σ µ σ= − = + − +( )( )1   ,

from which the effective applied stress range factor is:

N SF N SFeff
A

A= − +1
η   . (41)
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The sum of the three zones is the difference of the applied and resistive stress distribution means:

µ µ µ µR A R R R A A AS S S S− = − + − + −( ) ( ) ( )   . (42)

Though equation (42) combines probability contributions of applied, resistive, and safety factor range
factors which together decrease the tails overlap, and failure as shown in figure 6, their integrated difference
suggests a relative safety assessment looking for an absolute safety reference.

C.  First Order Reliability

Many advanced techniques are being investigated and are evolving15 for providing reliable structural
designs. In the meantime, assuming split normal probability distributions and defining resistive and applied
stresses in probabilistic format as in equation (36) leads to the first order reliability method may be  compatible
with prevailing practices, codes, and skills.

The concept of failure was introduced by figure 4, in which the distribution tails overlap suggests
the probability that a weak resistive material will encounter an excessively applied stress to cause failure.
This is to say that the probability of success is reliability and that the reliability is less than 100 percent.
Therefore, the probability of interference is the probability of failure and is governed by the difference of
their means, µ

R
–µ

A
. Increasing the difference of the means decreases the tail interference area.

Given that the applied and resistive stress probability density functions are independent, they may
be combined to form a third random variable density function16 in y =SR–SA. If SR and SA are normally
distributed random variables, then y =S–SA are also normally distributed and:

P EXP
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y
y

y

y
= −

−

















1

2
1
2σ π

µ
σ   , (43)

where µ µ µy R A= −   and σ σ σy R A= +2 2  . The y-variable distribution is plotted in figure 7.

FIGURE 7.—Density function of random variable y.
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The reliability of the third density function expressed in terms of y is:

R P S S P y P dyR A y= > = > = ∫
∝

( ) ( )0
0

  , (44)

where Py is the y-density function of equation (43). Letting Z
y y

y
=

−µ
σ , then σ ydz dy= . The lower limit

of Z is:

Zl
y

y

R A

R A

=
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= −
−

+

0

2 2

µ
σ

µ µ
σ σ

  .

As y approaches infinity, Z approaches infinity, and the reliability of equation (44) is reduced to:

R Z dZ= −











∫1
2 2

2

π
exp   . (45)

The integration of equation (45) is programmed in the appendix C. Given the reliability R, the
safety index “Z” value is printed, which may then be translated into statistical design parameters through
the safety index expression:

Z Zl
R A

R A

= − =
−

+

µ µ
σ σ2 2

  . (46)

Equation (46) formulates the probability concept. Increasing the safety index and the standard
deviations increases the means difference, which decreases tail interference area and the probability of
failure. The reliability relationship with the safety index is plotted in figure 8, and the reliability notation
0.9n represents n 9s after the decimal.

FIGURE 8.—Reliability versus safety index.
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Recognizing that the safety index from equation (46) shares the same difference and function of the
applied and resistive stress distribution means expressed by equation (42), then substituting and simplifying
reduces the safety index to the desired expression:

Z =
KσR + NAσ A + (SF– 1)(µ A + NAσ A)

σR
2 + σ A

2
. (47)

The designer autonomously selected variables17 are the safety factor and the range factors. The
safety index is noted to be about an order of magnitude more sensitive18 to the safety factor:

∂ η ∂Z
Z C N SF

SFA A= +6 1( ) ( )
( )   ,

than to the range factor:

∂ η
∂Z

Z C N
N
NA A

A

A
= 6   ,

where the common coefficient is C
SF A

R A
6 = −

( )µ
µ µ . The safety index is even less sensitive to coefficients of

variation. The coefficients of variation are passive variables derived from statistical data, and they vary and
combine in the structural computational process from region to region with variations in applied stresses
and materials (including welds), which suggests that the safety factor or safety index varies from region to
region. A specified common safety factor will not provide a common reliability.

The safety index provides structural analysts the options of designing substructures to specified
uniform safety factors and then calculating the absolute reliability from region to region having different
statistical variables, or of designing substructures to specified uniform reliability by adjusting safety factors
from region to region. Equation (47) is particularly important to the structural system in that the combined
probability of range and safety factors autonomously specified by the materials, loads, and stress disciplines
may be integrated and optimized into a specified absolute reliability uniformly across the vehicle structure
regardless of region to region material or operational environmental changes.

Developing a reliability criterion is an on-going concern in the aerostructural community. Selecting
an arbitrary standard reliability is no better than the current standard safety factor. It should be expected to
be derived from some compelling physical or economic constraint, such as risk:

risk P Ck k
k

= ∑   ,

where Pk is the probability of the outcome and Ck is the consequence of the outcome k . However, risk
requires great efforts, skills, and data.  The results of risk are too sensitive to simple changes in failure
processes, assumptions, and perceptions.  A component common reliability criteria development is more
compatible with the general designer culture and current practices.
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VI.  CONCLUSIONS AND RECOMMENDATIONS

The cause and nature of the long-suspected excessive conservatism in the prevailing structural
deterministic method have been identified as an inherent violation of the error propagation laws incurred
when reducing statistical data to deterministic values and combining them through several structural
computation processes. These errors are restricted to the applied loads and stress distribution computations,
and because mean and variations of the tolerance limit format are added, the errors are positive, serially
cumulative, and excessively conservative. Since the quasi-static structural deterministic conservatism varies
with design and analysis and is generally indefinable, stress audits based on deterministic pass-fail safety
factors are speculative, all of which should provide incentives for adapting probabilistic structural methods.

While most probabilistic methods in development would circumvent errors of propagation laws,
patching, and partially converting existing deterministic methods may be more expedient and would provide
the familiarity, confidence, and correlation with current experience base desired in new approaches.
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A1.  Normal Probability Density Distribution
Program

‘ NORMAL PROBABILITY DENSITY CURVE
OPEN”CLIP:”FOR OUTPUT AS #1
INPUT “MEAN =”,M
INPUT “STD DEVIATION =”,SD
INPUT “START =”,XS
INPUT “FINISH =”,XF
INPUT “INCREMENTS =”,NX
DX=(XF-XS)/(NX-1)
    FOR I=1 TO NX
    X=XS + (I-1)*DX
    F=EXP(-.5*((X-M)/SD)^2)
    F=F/((2*3.14159*SD)^.5)
WRITE #3,X,F
PRINT X,F
NEXT I
CLOSE #1
STOP

A2.  Normality Distribution Test Program

‘    NORMAL DISTRIBUTION TEST
‘    Kolmogorov-Smirnov (normality test)
‘    Critical values (n > 30): a=.10, d=.805;
‘        a=.05, d=.886; a=.01, d=1.03
OPEN”CLIP:”FOR OUTPUT AS #2

.
‘    Input data
CLEAR:INPUT “N=”;N
DIM  A(N),D(N),Z(N)
FOR I=1 TO N
INPUT A(I)
NEXT I

‘    sort data
K=N-1
LINE180:FOR X=1 TO K
B=A(X)
IF B<=A(X+1) GOTO line250
A(X)=A(X+1)
A(X+1)=B
Y=1
T=X-1
line250:NEXT X
IF Y=0 GOTO line300
Y=0
K=T
GOTO LINE180
line300:
PRINT “SORT DONE”

‘mean and std. deviation
FOR I=1 TO N
C=C+A(I)
D=D+A(I)*A(I)

APPENDICES

The following programs are presented for the structural analysts’ information, convenience, and
library. Recognizing that programs are computer and software specific, the following are coded in Quick-
Basic for their simplicity and application to pocket computers, and because of their easy conversion to
other languages. This appendix is broken down as follows:

A1. Normal probability density
distribution program

A2. Normality distribution test program
A3. Normalizing skewed distribution

(Split normal)
B. K-factor program
C. Safety index programs
D. Mises criterion program
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NEXT I
M=C/N
SD=((D-N*M*M)/(N-1))^.5
PRINT “MEAN=”;M
PRINT “STD DEV=”;SD

‘standardized normal
FOR I=1 TO N
Z(I)=(A(I)-M)/SD
NEXT I

‘cumulative normal
FOR I=1 TO N
X=Z(I):T=X
G=EXP(-X*X/2)/SQR(2*3.14159)
A1=.31938:A2=-.35656:A3=1.78147
A4=-1.82125:A5=1.330427
IF X<0 THEN T=-X
Y=1/(1+.2316419*T)
P=((((A5*Y+A4)*Y+A3)*Y+A2)*Y+A1)*Y
F=1-G*P
IF X<0 THEN F=1-F
DI=I/N                    ‘empirical cumulative
D(I)=ABS (F-DI)
IF DM<D(I) THEN DM=D(I):J=I
NEXT I

‘results
FOR I=1 TO N
PRINT D(I)
NEXT I
PRINT “WORST SAMPLE #”;J
PRINT “ABS DIFFERENCE, D”;DM
CLOSE #2
 END

Figure A1 is a plot of the D critical values
for a one-sided distribution.  The distribution is not
normal if the program test result exceeds the “D”
critical value. Most engineering data distributions
are one-sided, occurring in the lower or upper sides.

FIGURE A1.—One-sided test critical value of D.

A3. Normalizing Skewed Distribution (Split
Normal)

Stress data are assumed to be based on a
series of observed measurements reduced into a
frequency distribution, or probability histograms,
shown in figure A2. The base of the histogram is
bounded by successive and equal ranges of measured
values, and the heights represent the number of
observations (frequency) in each range.

FIGURE A2.—Stress frequency distributions.

To illustrate the direct normalization of a
skewed distribution, the stress frequency distribution
data of figure A2 is applied to equations (2) through
(5). Because the greater stress side defines the worst
demand case (applied stress), only data from the
shaded right side is used to calculate the normalized
distribution variables. The distribution may be
normalized by constructing a mirror image of the
engaged side about its peak frequency value and
calculating the standard deviation from the
constructed symmetrical distribution.

The peak frequency from figure A2 distribution is
the mean, µ =14 ksi.

Sample size is n n ni= − + ∑∑ 1 2

= 8+2 (8+7+4+2+1)=36.
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Sum of variations about the mean

v n xi i= −∑2 2( )µ
2×8 (14.0–14.0)2=0
2×7 (14.5–14.0)2=3.5
2×4 (15.0–14.0)2=8.0
2×2 (15.5–14.0)2=9.0
2×1 (16.0–14.0)2=8.0
                          v=28.5.

The variance is

σ 2
1

28 5
35 0 81= −∑ = =v

n
. .    ,

and the standard deviation from equation (3)
is σ=0.90 ksi.

The coefficient of variation from equation (40)

is η σ
µ= = =0 90

14 0 065. .   .

‘SPLIT NORMAL DISTRIBUTION
‘INPUT DATA
CLEAR: INPUT “PEAK FREQUENCY=”,MU
INPUT “NUMBER OF BARS=”,N
DIM F(N), X(N)
FOR I=1 TO N
INPUT F(I)
NEXT I
FOR I=1 TO N
INPUT X(I)
NEXT I

‘CACULATE
S=0:FOR I=2 TO N
S=S+2 *F(I)
NEXT I
SS=S+F(1)
PRINT”SAMPLE SIZE=”,SS
VMU=0:FOR I=1 TO N
VMU=VMU+2*F(I)*(X(I)-MU)^2
NEXT I
PRINT”VARIATIONS FROM MEAN=”,VMU
PRINT “MEAN=”,MU
SD=(VMU/(SS-1))^.5
PRINT “STD DEV=”,SD
COF=SD/MU
PRINT”COEF OF VAR=”,COF

B.  K-Factor Program

‘K- FACTOR
MARIO:
DEFDBL A-Z
INPUT”SAMPLE SIZE=”;NS
INPUT “PROPORTION”;P
INPUT “CONFIDENCE=”;CL
IF NS>90 THEN PRINT”SAMPLE SIZE SHOULD
BE SMALLER THAN 90":WHILE INKEY$=””:WEND
START=TIMER
PI=3.141592654#
‘INVERSE NORMAL
Q=1-P:T=SQR(-2*LOG(Q))
A0=2.30753:A1=.27061:B1=.99229:B2=.0481
NU=A0+A1*T:DE=1+B1*T+B2*T*T
X=T-NU/DE
L0: Z=1/SQR(2*PI)*EXP(-X*X/2):IF X>2 GOTO L3
V=25-13*X*X
FOR N=11 TO 0 STEP-1
U=(2*N+1)+(-1)^(N+1)*(N+1)*X*X/V
V=U:NEXT N
F=.5-Z*X/V
W=Q-F:GOTO L2
L3:V=X+30
FOR N=29 TO 1 STEP -1
U=X+N/V
V=U :NEXT N
F=Z/V :W=Q-F :GOTO L2
L2:L=L+1
R=X:X=X-W/Z
E=ABS(R-X)
IF E>.00001 GOTO L0
‘END OF INVERSE NORMAL

‘CALCULATION OF FACTORIAL
N=NS:NU=N-1
MT=INT(NU/2):UT=NU-2*MT
GT=1
FOR I=1 TO MT-1+UT
KT=I
IF UT=0 GOTO L1
KT=I-.5
L1:GT=GT*KT
NEXT I
GT=GT*(1+UT*(SQR(PI)-1))
GF=GT*2^(NU/2-1)
‘END OF FACTORIAL

‘SECANT METHOD
KP=X:J=1:K=KP
K0=K:GOSUB INTEGRATION:SF0=SF
K=K*(1+.0001):K1=K:GOSUB
INTEGRATION:SF1=SF
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BEGIN:K=K1-SF1*(K1-K0)/(SF1-SF0)
IF ABS((K1-K)/K1)<.000001 GOTO RESULT
J=J+1:K0=K1:K1=K:SF0=SF1
GOSUB INTEGRATION:SF1=SF:GOTO BEGIN
RESULT:FINISH=TIMER
BEEP:BEEP
PRINT “K =”;USING”##.####”;K
PRINT “TIME=”;FINISH-START;”SECONDS”
‘END OF SECANT METHOD
WHILE MOUSE(0)<>(1):WEND
GOTO MARIO

INTEGRATION:L1=0:L2=10
IF N>40 THEN L2=20
DL=KP*SQR(N):TP=K*SQR(N)
Y=NU/2
M=2:E=0:H=(L2-L1)/2
X=L1:GOSUB FUNCTION
Y0=Y:X=L2:GOSUB FUNCTION
YN=Y:X=L1+H:GOSUB FUNCTION
U=Y:S=(Y0+YN+4*U)*H/3
START:M=2*M
D=S:H=H/2:E=E+U:U=0
FOR I=1 TO M/2
X=L1+H*(2*I-1):GOSUB FUNCTION
U=U+Y
NEXT I
S=(Y0+YN+4*U+2*E)*H/3
IF ABS((S-D)/D)>.00001# GOTO START
SF=S/GF-CL
RETURN
‘END OF SIMPSON

FUNCTION: Z=TP*X/SQR(NU)-DL
T0=Z:G0=1/SQR(2*PI)*EXP(-Z*Z/2)
A1=.3193815:A2=-.3565638:A3=1.781478:
A4=-1.821256:A5=1.330274
IF Z<0 THEN T0=-Z
W=1/(1+.231649*T0)
P1=((((A5*W+A4)*W+A3)*W+A2)*W+A1)*W
PH=1-G0*P1
IF Z<0 THEN PH=1-PH
Y=PH*X^(NU-1)*EXP(-X*X/2)
RETURN

C.  Safety Index Programs

‘SAFETY INDEX FROM RELIABILITY

‘NORMIN (.5,P,1)
DEFDBL A-Z
LL: INPUT”Probability=”;P
PI=3.141593

PI=3.141593
Q=1-P:T=SQR(-2*LOG(Q))
A0=2.30753:a1=.27061
B1=.99229:B2=.0481
NU=A0+a1*T
DE=1+B1*T+B2*T*T
X=T-NU/DE

‘CUMULATIVE NORMAL
L0: Z=1/SQR(2*PI)*EXP(-X*X/2)
IF X>2 GOTO L1
V=25-13*X*X
FOR N=11 TO 0 STEP-1
U=(2*N+1)+(-1)^(N+1)*(N+1)*X*X/V
V=U:NEXT N
F=.5-Z*X/V
W=Q-F
GOTO L2
L1:V=X+30
FOR N=29 TO 1 STEP-1
U=X+N/V
V=U:NEXT N
F=Z/V:W=Q-F:GOTO L2

L2:L=L+1
R=X:X=X-W/Z
E=ABS(R-X)
IF E>.001 GOTO L0
PRINT “SAFETY INDEX IS”
PRINT USING “##.####”;X
GOTO LL
END

‘RELIABILITY FROM  SAFETY INDEX

‘NORMIN (0.5,P,1)
DEFDBL A-Z
‘INPUT”P=”;P:PI=3.141593
PI=3.141593
‘Q=1-P:T=SQR(-2*LOG(Q))
‘A0=2.30753:A1=.27061
‘B1=.99229:B2=.0481
‘NU=A0+a1*T
‘DE=1+B1*T+B2*T*T
‘X=T-NU/DE

‘CUMULATIVE NORMAL

INPUT”X=”;X
Z=1/SQR(2*PI)*EXP(-X*X/2)
IF X>2 GOTO L1
V=25-13*X*X
FOR N=11 TO 0 STEP-1
U=(2*N+1)+(-1)^(N+1)*(N+1)*X*X/V
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V=U:NEXT N
F=.5-Z*X/V:F=1-F
GOTO L2
L1:V=X+30
FOR N=29 TO 1 STEP-1
U=X+N/V
V=U:NEXT N
F=Z/V:F=1-F
L2:
PRINT F
END

D.  Mises Criterion Program

‘ERROR PROPAGATION METHOD;
‘ MISES CRITERION
DEFDBL A-Z
INPUT”NUMBER OF NORMAL STRESS=”,NS
DIM STATIC NSM(3),NSSD(3),NSNF(3),
NSFD(3),LNS(3)

FOR I=1 TO NS
PRINT “NORMAL LOAD MEAN(“;I;”)=”
INPUT NSM(I)
PRINT”NORMAL LOAD STD. DEVIATION(“;I;”)=”
INPUT  NSSD(I)
PRINT”NORMAL LOAD N-FACTOR(“;I;”)=”
INPUT NSNF(I)
NEXT I

INPUT “NUMBER OF SHEAR STRESSES=”,MS
DIM STATIC SSM(3),SSSD(3),SSNF(3),SSFD(3),
LSS(3)
FOR I=1 TO MS
PRINT “SHEAR LOAD MEAN(“;I;”)=”
INPUT SSM(I)
PRINT “SHEAR LOAD STD. DEVIATION(“;I;”)=”
INPUT SSSD(I)
PRINT “SHEAR LOAD N-FACTOR(“;I;”)=”
INPUT SSNF(I)
NEXT I

‘CALCULATION OF SYSTEM MEAN
S1=0:FOR I=1 TO NS:S1=S1+NSM(I)^2:NEXT I
S2=0:FOR I=1 TO MS:S2=S2+SSM(I)^2:NEXT I
MZ1= S1-NSM(1)*NSM(2)-NSM(1)*NSM(3)
MZ2=MZ1-NSM(2)*NSM(3)+3*S2
MZ= SQR(MZ2)
‘CALCULATION OF DERIVATIVES

NSFD(1)=(2*NSM(1)-NSM(2)-NSM(3))/2/MZ
NSFD(2)=(2*NSM(2)-NSM(1)-NSM(3))/2/MZ
NSFD(3)=(2*NSM(3)-NSM(1)-NSM(2))/2/MZ
FOR I=1 TO MS:SSFD(I)=3*SSM(I)/MZ:NEXT I
‘CALCULATION OF SUM OF SQUARES OF
‘ NORMAL STRESSES
S3=0:S4=0:FOR I=1 TO NS
S3=S3+(NSFD(I)*NSSD(I))^2
S4=S4+(NSNF(I)*NSFD(I)*NSSD(I))^2
NEXT I

‘CALCULATION OF SUM OF SQUARES OF
‘ SHEAR STRESSES
S5=0:S6=0: FOR I=1 TO MS
S5=S5+(SSFD(I)*SSSD(I))^2
S6=S6+(SSNF(I)*SSFD(I)*SSSD(I))^2
NEXT I

‘CALCULATION OF SYSTEM STANDARD
‘AND EFFECTIVE DEVIATIONS
SZ=SQR(S3+S5):SN=SQR(S4+S6)
NE=SN/SZ

‘CALCULATION OF SYSTEM COEFFICIENT
‘ OF VARIATION
ETA=SZ/MZ

‘CALCULATION OF SYSTEM TOLERANCE LIMIT
TL=MZ+(NE*SZ)

‘CALCULATION OF MISES FUNCTION
FOR I=1 TO NS
LNS(I)=(NSM(I)+NSNF(I)*NSSD(I))^2
NEXT I
FOR I=1 TO MS
LSS(I)=(SSM(I)+SSNF(I)*SSSD(I))^2
NEXT I
FM1=0:FOR I=1 TO NS
FM1=FM1+LNS(I):NEXT I
FM2=0:FOR I=1 TO MS
FM2=FM2+LSS(I):NEXT I
FM= SQR(FM1+3*FM2)

PRINT  “COMBINED APPLIED STRESSS =”;FM
PRINT “MEAN =”;MZ
PRINT “STANDARD DEVIATION =”SZ
PRINT “EFFECTIVE N =”;NE
PRINT  “COEFFICIENT OF VARIATION =”;ETA
PRINT  “TOLERANCE LIMIT =”;TL
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